
CSCI2510 Computer Organization

Lecture 07: Cache in Action

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

Reading: Chap. 8.6

mailto:mcyang@cse.cuhk.edu.hk

Recall: Memory Hierarchy

CSCI2510 Lec07: Cache in Action 2021-22 T1 2

 Register: SRAM

 L1, L2 cache: SRAM

 Main memory: SDRAM

 Secondary storage:

NVM/SSD/HDD

Processor

volatile

non-volatile

Outline

• Cache Basics

• Mapping Functions

– Direct Mapping

– Associative Mapping

– Set Associative Mapping

• Replacement Algorithms

– Optimal Replacement

– Least Recently Used (LRU) Replacement

– Random Replacement

• Working Examples

CSCI2510 Lec07: Cache in Action 2021-22 T1 3

Cache: Fast but Small

• The cache is a small but very fast memory.

– Interposed between the processor and main memory.

• Its purpose is to make the main memory appear to

the processor to be much faster than it actually is.

– The processor does not need to know explicitly about the

existence of the cache, but just feels faster!

• How to? Exploit the locality of reference to “properly”

load some data from the main memory into the cache.
CSCI2510 Lec07: Cache in Action 2021-22 T1 4

Transparent to Processor

A

B

C

Locality of Reference

• Temporal Locality (locality in time)

– If an item is referenced, it will tend to be referenced

again soon (e.g., recent calls).

– Strategy: When the data are firstly needed,

opportunistically bring it into cache (i.e., we hope it will be

used soon).

• Spatial Locality (locality in space)

– If an item is referenced, neighboring items whose

addresses are close-by will tend to be referenced soon.

– Strategy: Rather than a single word, fetching more data

of adjacent addresses (unit: cache block) from main

memory into cache at a time.

• Cache takes both types of locality into considerations.
CSCI2510 Lec07: Cache in Action 2021-22 T1 5

Cache at a Glance

CSCI2510 Lec07: Cache in Action 2021-22 T1 6

Cache
Main

MemoryProcessor
Unit:

Cache Line (16~256 B)

Unit:

Word (32 or 64 bits)

• Cache Block / Line: The unit composed of multiple

successive memory words (size: cache block > word).

– The contents of a cache block (of memory words) will be

loaded into or unloaded from the cache at a time.

• Cache Read (or Write) Hit/Miss: The read (or write)

operation can/cannot be performed on the cache.

• Cache Management:

– Mapping Functions: Decide how cache is organized and

how addresses are mapped to the main memory.

– Replacement Algorithms: Decide which item to be

unloaded from cache when cache is full.

Read Operation in Cache

• Read Operation:

– Contents of a cache block are loaded from the memory into

the cache for the first read.

– Subsequent accesses that can be (hopefully) performed on

the cache, called a cache read hit.

– The number of cache entries is relatively small, we need to

keep the most likely to-be-used data in cache.

• When an un-cached block is required (i.e., cache read miss) but the

cache is already full, the replacement algorithm removes a cached

block and to create space for the new one.

CSCI2510 Lec07: Cache in Action 2021-22 T1 7

Cache Main
MemoryProcessor

first readcache

read hit

replacement
if full?

Write Operation in Cache

• Write Operation:

– Write-Through Scheme: The contents of cache and

main memory are updated at the same time.

– Write-Back Scheme: Update cache only but mark the

item as dirty. The corresponding contents in main memory

will be updated later when cache block is unloaded.

• Dirty: The data item needs to be written back to the main memory.

• Which scheme is simpler?

• Which one has better performance?

CSCI2510 Lec07: Cache in Action 2021-22 T1 8

Cache Main
MemoryProcessor

write-through

write-back replacement

(later)

Outline

• Cache Basics

• Mapping Functions

– Direct Mapping

– Associative Mapping

– Set Associative Mapping

• Replacement Algorithms

– Optimal Replacement

– Least Recently Used (LRU) Replacement

– Random Replacement

• Working Examples

CSCI2510 Lec07: Cache in Action 2021-22 T1 9

Mapping Functions (1/3)

• Cache-Memory Mapping Function: A way to record

which block of the main memory is now in cache.

• What if the case size == the main memory size?

• Trivial! One-to-one mapping is enough!

CSCI2510 Lec07: Cache in Action 2021-22 T1 10

Cache

(FAST)

Memory

(SLOW)

CPU

(FASTEST)

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 6

Block 7

Unit:

Cache

Line/Block

Unit:

Word

Mapping Functions (2/3)

• Reality: The cache size is much smaller (<<<) than

the main memory size.

• Many-to-one mapping is needed!

– Many blocks in memory compete for one block in cache.

– One block in cache can only represent one block in memory

at any given time.

CSCI2510 Lec07: Cache in Action 2021-22 T1 11

Cache

(FAST)

Memory

(SLOW)

CPU

(FASTEST) Block 0

Block 1

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Unit:

Cache

Line/Block

Unit:

Word

CSCI2510 Lec07: Cache in Action 2021-22 T1

Mapping Functions (3/3)

• Design Considerations of Mapping Functions:

– Efficient: Determine whether a block is in cache quickly.

– Effective: Make full use of cache to increase cache hit ratio.

• Cache Hit/Miss Ratio: the probability of cache hits/misses.

• In the following discussion, we assume:

– Synonym: Cache Line = Cache Block = Block

• Note: A cache block is of successive memory words.

– 1 Word = 16 bits = 21 Bytes

– 1 Block = 8 Words = 23 Words

– Cache Size: 2K Bytes → 128 Cache Blocks

• Cache Block (CB): The block in the cache.

– Memory Size: 16-bit Address → 216 = 64K Bytes

→ 4096 Memory Blocks

• Memory Block (MB): The block in the main memory. 12

0

1

127

Cache

Blocks

…

0

1

4095

Memory

Blocks

…

Recall: Big-Endian and Little-Endian

CSCI2510 Lec07: Cache in Action 2021-22 T1 13

Big

Endian

0

…

1 2 3

4 5 6 7

Word

address

0

4

32 bits

2k-4 2k-3 2k-2 2k-12k-4

+0 +1 +2 +3

2k-4

3

…

2 1 0

7 6 5 4

Word

address

0

4

32 bits

2k-1 2k-2 2k-3 2k-4

Little

Endian

+3 +2 +1 +0

Byte addressByte address

• Big-Endian Ordering (e.g., Motorola):

 Byte addresses within a word are ordered left-to-right;

 Lower byte addresses are used for more significant bytes

of a multi-byte data (e.g., numbers).

• Little-Endian Ordering (e.g., Intel):

 Byte addresses within a word are ordered right-to-left;

 Lower byte addresses are used for less significant bytes

of a multi-byte data (e.g., numbers).

Example: Memory Block #0

CSCI2510 Lec07: Cache in Action 2021-22 T1 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Byte #0

Byte #1

Byte #2

Byte #3

Byte #4

Byte #5

Byte #6

Byte #7

Byte #8

Byte #9

Byte #10

Byte #11

Byte #12

Byte #13

Byte #14

Byte #15

Word

#0

Byte

#1

Byte

#0

Word

#1

Byte

#3

Byte

#2

Word

#2

Byte

#5

Byte

#4

Word

#3

Byte

#7

Byte

#6

Word

#4

Byte

#9

Byte

#8

Word

#5

Byte

#11

Byte

#10

Word

#6

Byte

#13

Byte

#12

Word

#7

Byte

#15

Byte

#14

0

4095

MBs

#0~#4095

Memory Block

#0

16-bit Memory Address (binary) Byte Addr.

(decimal)Block Address
Word Address

Byte Address

CSCI2510 Lec07: Cache in Action 2021-22 T1

1 Block = 23 Words

1 Word = 21 Bytes

Example: Memory Block #1

CSCI2510 Lec07: Cache in Action 2021-22 T1 15

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Byte #16

Byte #17

Byte #18

Byte #19

Byte #20

Byte #21

Byte #22

Byte #23

Byte #24

Byte #25

Byte #26

Byte #27

Byte #28

Byte #29

Byte #30

Byte #31

Word

#8

Byte

#17

Byte

#16

Word

#9

Byte

#19

Byte

#18

Word

#10

Byte

#21

Byte

#20

Word

#11

Byte

#23

Byte

#22

Word

#12

Byte

#25

Byte

#24

Word

#13

Byte

#27

Byte

#26

Word

#14

Byte

#29

Byte

#28

Word

#15

Byte

#31

Byte

#30

0

1

4095

…

MBs

#0~#4095

Memory Block

#0

16-bit Memory Address (binary)
Block Address

Word Address
Byte Address

Byte Addr.

(decimal)

1 Block = 23 Words

1 Word = 21 Bytes

Example: Memory Block #4095

CSCI2510 Lec07: Cache in Action 2021-22 T1 16

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

B#65520

B#65521

B#65522

B#65523

B#65524

B#65525

B#65526

B#65527

B#65528

B#65529

B#65530

B#65531

B#65532

B#65533

B#65534

B#65535

Word
#32760

Byte
#65525

Byte
#65520

Word
#32761

Byte
#65525

Byte
#65522

Word
#32762

Byte
#65525

Byte
#65524

Word
#32763

Byte
#65527

Byte
#65526

Word
#32764

Byte
#65529

Byte
#65528

Word
#32765

Byte
#65531

Byte
#65530

Word
#32766

Byte
#65533

Byte
#65532

Word
#32767

Byte
#65535

Byte
#65534

0

1

4095

…

MBs

#0~#4095

Memory Block

#0

16-bit Memory Address (binary)
Block Address

Word Address
Byte Address

Byte Addr.

(decimal)

1 Block = 23 Words

1 Word = 21 Bytes

Prior Knowledge: Modulo Operator

• The modulo (%) operator is used to divide two

numbers and get the remainder.

• Example:

CSCI2510 Lec07: Cache in Action 2021-22 T1 17

Class Exercise 7.1

• Given the same dividend (10010011)2 as the previous

example, what will be the quotient and remainder if

the divisor equals to (10)2, (100)2, …, (10000000)2?

CSCI2510 Lec07: Cache in Action 2021-22 T1 18

Student ID:

Name:

Date:

Direct Mapping (1/4)

CSCI2510 Lec07: Cache in Action 2021-22 T1 20

Direct

•A Memory Block is

directly mapped (%)

to a Cache Block.

Associative

•A Memory Block

can be mapped to

any Cache Block.
(First come first serve!)

Set Associative

• A Memory Block is

directly mapped

(%) to a Cache Set.
(In a set? Associative!)

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

Set

0

Set

1

Direct Mapping (2/4)

• Direct Mapped Cache:

Each Memory Block will be

directly mapped to a Cache Block.

• Direct Mapping Function:

– 128? There’re 128 Cache Blocks.

– 32 MBs are mapped to 1 CB.
• MBs 0, 128, 256, …, 3968→ CB 0.

• MBs 1, 129, 257, …, 3969 → CB 1.

• …

• MBs 127, 255, 383, …, 4095 → CB 127.

CSCI2510 Lec07: Cache in Action 2021-22 T1 21

Main
Memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

MB #j→ CB #(j mod 128)

– A tag is needed for each CB.
• Many MBs will be mapped to a same CB in cache.

• We need to use some cache space (cost!) to keep tags.

Direct Mapping (3/4)

CSCI2510 Lec07: Cache in Action 2021-22 T1 22

Main
Memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

7 3

16-bit Main
Memory Address

Tag Block Word

5

Memory Block Number
(i.e. 0~4095)

• Trick: Interpret the 16-bit main memory

address as follows:

– Tag: Keep track of which MB is placed in the

corresponding CB.

• 5 bits: 16 – (7 + 4) = 5 bits.

– Block: Determine the CB in cache.

• 7 bits: There’re 128 = 27 cache blocks.

– Word: Select one word in a block.

• 3 bits: There’re 8 = 23 words in a block.

– Byte: Select one byte in a word.

• 1 bits: There’re 2 = 21 bytes in a word.

• Ex: CPU is looking for (0FF4)16

– MAR = (0000 1111 1111 0100)2

– MB = (0000 1111 1111)2 = (255)10

– CB = (1111111)2 = (127)10

– Tag = (00001)2

00001

0000111111110100

1

B

1 Block = 23 Words

1 Word = 21 Bytes

Direct Mapping (4/4)

• Why the first 5 bits for tag? And

why the middle 7 bits for block?

• Search a 16-bit address (t, b, w, b):

 See if MB (t, b) is already in CB b by

comparing t with the tag of CB b.

 If not, replace CB b with MB (t, b)

and update tag of CB b using t.

 Finally access the word w in CB b.
CSCI2510 Lec07: Cache in Action 2021-22 T1 23

000011111111010010000000)

00001 Quotient

Remainder

(128)10

MB #j→ CB #(j mod 128)

Main
Memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127
00001

10000000

1111111

7 3

16-bit Main
Memory Address

Tag Block Word

5

Memory Block Number
(i.e. 0~4095)

0000111111110100

1

B

Class Exercise 7.2

• Assume direct mapping is used to manage

the cache, and all CBs are empty initially.

• Considering CPU is looking for (8010)16:

– Which MB will be loaded into the cache?

– Which CB will be used to store the MB?

– What is the new tag for the CB?

CSCI2510 Lec07: Cache in Action 2021-22 T1 24

Main
Memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

7 3

16-bit Main
Memory Address

Tag Block Word

5

Memory Block Number
(i.e. 0~4095)

1

B

1 Block = 23 Words

1 Word = 21 Bytes

Associative Mapping (1/3)

CSCI2510 Lec07: Cache in Action 2021-22 T1 26

Direct

•A Memory Block is

directly mapped (%)

to a Cache Block.

Associative

•A Memory Block

can be mapped to

any Cache Block.
(First come first serve!)

Set Associative

• A Memory Block is

directly mapped

(%) to a Cache Set.
(In a set? Associative!)

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

Set

0

Set

1

Associative Mapping (2/3)

• Direct Mapping: A MB is restricted to a particular CB

determined by mod operation.

CSCI2510 Lec07: Cache in Action 2021-22 T1 27

• Associative Mapping:

• Trick: Interpret the 16-bit main

memory address as follows:

– Tag: The first 12 bits (i.e., the

MB number) are all used to

represent a MB.

– Word & Byte: The last 3 & 1 bits

for selecting a word & byte in a

block.

tag

tag

tag

Cache

Block 0

Block 1

Block i

Block 4095

Block 0

Block 1

Block 127

Main
Memory

12

Tag

16-bit Main
Memory Address

Memory Block Number
(i.e. 0~4095)

Allow a MB to be mapped

to any CB in the cache.

3

Word

1

B

Associative Mapping (3/3)

• How to determine the CB?

– There’s no pre-determined CB for any MB.

– All CBs are used in the first-come-first-serve (FCFS) basis.

• Ex: CPU is looking for (0FF4)16

– Assume all CBs are empty.

– MAR = (0000 1111 1111 0100)2

– MB = (0000 1111 1111)2 = (255)10

– Tag = (0000 1111 1111)2

CSCI2510 Lec07: Cache in Action 2021-22 T1 28

tag

tag

tag

Cache

Block 0

Block 1

Block 255

Block 4095

Block 0

Block 1

Block 127

Main
Memory

12

Tag

16-bit Main
Memory Address

Memory Block Number
(i.e. 0~4095)

000011111111

• Search a 16-bit addr. (t, w, b):

– ALL tags of 128 CBs must be

compared with t to see whether

MB t is currently in the cache.

• 128 tag comparisons can be done

in parallel by hardware (cost!).

3

Word

1

B

1 Block = 23 Words

1 Word = 21 Bytes

Class Exercise 7.3

• Assume associative mapping is used to manage the

cache, and all CBs are empty initially.

• Considering CPU is looking for (8010)16:

– Which MB will be loaded into the cache?

– Which CB will be used to store the MB?

– What is the new tag for the CB?

CSCI2510 Lec07: Cache in Action 2021-22 T1 29

tag

tag

tag

Cache

Block 0

Block 1

Block ???

Block 4095

Block 0

Block 1

Block 127

Main
Memory

12

Tag

16-bit Main
Memory Address

Memory Block Number
(i.e. 0~4095)

3

Word

1

B

1 Block = 23 Words

1 Word = 21 Bytes

Set Associative Mapping (1/3)

CSCI2510 Lec07: Cache in Action 2021-22 T1 31

Direct

•A Memory Block is

directly mapped (%)

to a Cache Block.

Associative

•A Memory Block

can be mapped to

any Cache Block.
(First come first serve!)

Set Associative

• A Memory Block is

directly mapped

(%) to a Cache Set.
(In a set? Associative!)

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

Set

0

Set

1

Set Associative Mapping (2/3)

• Set Associative Mapping: A combination

of direct mapping and associative mapping

CSCI2510 Lec07: Cache in Action 2021-22 T1 32

Main
Memory

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 128

Block 129

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 126

tag

tag

Block 2

Block 3

tag
Block 127

Set 0

Set 1

Set 63

1st

2nd

64th

– Direct: First map a MB to a

cache set (instead of a CB)

– Associative: Then map to

any CB in the cache set

• K-way Set Associative:

A cache set is of k CBs.

– Ex: 2-way set associative

• 128 ÷ 2 = 64 (𝑠𝑒𝑡𝑠)

• For MB #j, (j mod 64)

derives the Set number.

– E.g. MBs 0, 64, 128, …, 4032

→ Cache Set #0.

Set Associative Mapping (3/3)

CSCI2510 Lec07: Cache in Action 2021-22 T1 33

Main
Memory

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 4095

Block 255

6 6

Tag Set

tag

tag

tag

Cache

Block 0

Block 1

Block 126

tag

tag

Block 2

Block 3

tag
Block 127

Set 0

Set 1

Set 63

1st

2nd

64th

16-bit Main
Memory Address

• Consider 2-way set associative.

• Trick: Interpret the 16-bit

address as follows:

– Tag: The first 6 bits (quotient).

– Set: The middle 6 bits (remainder).

• 6 bits: There’re 26 cache sets.

– Word & Byte: The last 3 & 1 bits.

Ex: CPU is looking for (0FF4)16

– Assume all CBs are empty.

– MAR = (0000 1111 1111 0100)2

– MB = (0000 1111 1111)2 = (255)10

– Cache Set = (111111)2 = (63)10

– Tag = (000011)2

Note: ALL tags of CBs in a set must be

compared (done in parallel by hardware).
Memory Block Number

(i.e. 0~4095)

000011

3

Word

1

B

1 Block = 23 Words

1 Word = 21 Bytes

Class Exercise 7.4

• Assume 2-way set associative mapping is used,

and all CBs are empty initially.

• Considering CPU is looking for (8010)16:

– Which MB will be loaded into the cache?

– Which CB will store the MB?

– What is the new tag for the CB?

CSCI2510 Lec07: Cache in Action 2021-22 T1 34

Main
Memory

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 4095

Block ???

tag

tag

tag

Cache

Block 0

Block 1

Block 126

tag

tag

Block 2

Block 3

tag
Block 127

Set 0

Set 1

Set 63

1 Block = 23 Words

1 Word = 21 Bytes

Summary of Mapping Functions (1/2)

CSCI2510 Lec07: Cache in Action 2021-22 T1 36

Direct

A Memory Block is

directly mapped (%)

to a Cache Block.

Associative

A Memory Block

can be mapped to

any Cache Block.
(First come first serve!)

Set Associative

A Memory Block is

directly mapped (%)

to a Cache Set.

In a Set? Associative!

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

0

1

2

3

2

3

4

5

0

1

6

7

Cache

Blocks

Memory

Blocks

Set

0

Set

1

Summary of Mapping Functions (2/2)

CSCI2510 Lec07: Cache in Action 2021-22 T1 37

Direct Associative Set Associative

64 = 26 Cache Sets

Assume: 2-way

set associative

is used.

12

Tag

16-bit Main
Memory Address

7

16-bit Main
Memory Address

Tag Block

5

Memory Block Number
(i.e. 0~4095)

Memory Block Number
(i.e. 0~4095)

128 = 27

Cache Blocks

6 6

Tag Set

16-bit Main
Memory Address

Memory Block Number
(i.e. 0~4095)

3

Word

1

B

3

Word

1

B

3

Word

1

B

1 Block = 23 Words

1 Word = 21 Bytes

Outline

• Cache Basics

• Mapping Functions

– Direct Mapping

– Associative Mapping

– Set Associative Mapping

• Replacement Algorithms

– Optimal Replacement

– Least Recently Used (LRU) Replacement

– Random Replacement

• Working Examples

CSCI2510 Lec07: Cache in Action 2021-22 T1 38

Replacement Algorithms

CSCI2510 Lec07: Cache in Action 2021-22 T1 39

• Replace: Write Back (to old MB) & Overwrite (with new MB)

• Direct Mapped Cache:

– The CB is pre-determined directly by the memory address.

– The replacement strategy is trivial: Just replace the pre-

determined CB with the new MB.

• Associative and Set Associative Mapped Cache:

– Not trivial: Need to determine which block to replace.

• Optimal Replacement: Always keep CBs, which will be used

sooner, in the cache, if we can look into the future (not practical!!!).

• Least recently used (LRU): Replace the block that has gone the

longest time without being accessed by looking back to the past.

– Rationale: Based on temporal locality, CBs that have been referenced

recently will be most likely to be referenced again soon.

• Random Replacement: Replace a block randomly.

– Easier to implement than LRU, and quite effective in practice.

Optimal Replacement Algorithm

• Optimal Algorithm: Replace the CB that will not be

used for the longest period of time (in the future).

• Given an associative mapped cache, which is

composed of 3 Cache Blocks (CBs 0~2).

– The optimal algorithm causes 9 times of cache misses.

CSCI2510 Lec07: Cache in Action 2021-22 T1 40

MB

Access 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

CB 0 7 7 7 2 2 2 2 2 7

CB 1 0 0 0 0 4 0 0 0

CB 2 1 1 3 3 3 1 1

time

LRU Replacement Algorithm

• LRU Algorithm: Replace the CB that has not been

used for the longest period of time (in the past).

• Given an associative mapped cache, which is

composed of 3 Cache Blocks (CBs 0~2).

– The LRU algorithm causes 12 times of cache misses.

CSCI2510 Lec07: Cache in Action 2021-22 T1 41

MB

Access 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

CB 0 7 7 7 2 2 4 4 4 0 1 1 1

CB 1 0 0 0 0 0 0 3 3 3 0 0

CB 2 1 1 3 3 2 2 2 2 2 7

time

Class Exercise 7.5

• First-In-First-Out Algorithm: Replace the CB that

has arrived for the longest period of time (in the past).

• Given an associative mapped cache, which is

composed of 3 Cache Blocks (CBs 0~2).

• Please fill in the cache and state cache misses.

CSCI2510 Lec07: Cache in Action 2021-22 T1 42

MB

Access 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

CB 0

CB 1

CB 2

time

Outline

• Cache Basics

• Mapping Functions

– Direct Mapping

– Associative Mapping

– Set Associative Mapping

• Replacement Algorithms

– Optimal Replacement

– Least Recently Used (LRU) Replacement

– Random Replacement

• Working Examples

CSCI2510 Lec07: Cache in Action 2021-22 T1 44

• Cache Configuration:

– Cache has 8 blocks.

– A block is of 1 (= 20) word.

– A word is of 16 bits.

• Consider a program:

1) Computes the sum of the

first column of an array

using a forward loop.

2) Normalizes the first

column of an array by its

mean (i.e. average) using

a backward loop.

– A[10][4] is an array of

words located at memory

(7A00)16~(7A27)16

in row-major order.

Cache Example

CSCI2510 Lec07: Cache in Action 2021-22 T1 45

short A[10][4];

int sum = 0;

int j, i;

double mean;

// 1) forward loop

for (j = 0; j <= 9; j++)

sum += A[j][0];

mean = sum / 10.0;

// 2) backward loop

for (i = 9; i >= 0; i--)

A[i][0] = A[i][0] / mean;

Row-Major vs. Column-Major Order

• Row-major order and column-major

order are methods for storing

multidimensional arrays in memory.

– Row-Major: The consecutive elements of a

row reside next to each other.

– Column-Major: The consecutive elements

of a column reside next to each other.

• For example,

CSCI2510 Lec07: Cache in Action 2021-22 T1 46

https://en.wikipedia.org/wiki/Row-_and_column-major_order

CSCI2510 Lec07: Cache in Action 2021-22 T1

• A block is of 20 word: There is no “word” bit.

• A word is of 21 bytes: There is one “byte” bit (X).

A[0][0]: (7A00)
A[1][0]: (7A04)
A[2][0]: (7A08)
A[3][0]: (7A0C)
A[4][0]: (7A10)
A[5][0]: (7A14)
A[6][0]: (7A18)
A[7][0]: (7A1C)
A[8][0]: (7A20)
A[9][0]: (7A24)

first columnj i

Program

Cache Example (Cont’d)

47

1 1 1 1 10 0 0 0 0 0 0 0 0 0
1 1 1 1 10 0 0 0 0 0 0 0 0 1
1 1 1 1 10 0 0 0 0 0 0 0 01
1 1 1 1 10 0 0 0 0 0 0 0 1 1

1 1 1 1 10 0 0 0 0 0 0 1 0 0

1 1 1 1 10 0 0 0 1 0 0 1 0 0
1 1 1 1 10 0 0 0 1 0 0 1 0 1
1 1 1 1 10 0 0 0 1 0 0 1 01

1 1 1 1 10 0 0 0 1 0 0 1 1 1

Hex.

(7A00)16

(7A01)16

(7A02)16

(7A03)16

(7A04)16

(7A24)16

(7A25)16

(7A26)16

(7A27)16

(
(
(
(

(

(
(
(

(

A[0][0]

A[0][1]

A[0][2]

A[0][3]

A[1][0]

A[9][0]

A[9][1]

A[9][2]

A[9][3]

Memory Contents
(40 array elements)

)2

)2

)2

)2

)2

)2

)2

)2

)2

Binary

…… …

Tag for Direct Mapped

Tag for Set-Associative

Tag for Associative

3

1

Memory Block/Word Address (15-bit)

Tag: 12 bits

Tag: 14 bits

Tag: 15 bits

A[10][4];
at (7A00)16~(7A27)16

in row-major order.

A[0][0] A[0][1] A[0][2] A[0][3]

A[1][0] A[1][1] A[1][2] A[1][3]

A[2][0] A[2][1] A[2][2] A[2][3]

A[3][0] A[3][1] A[3][2] A[3][3]

A[4][0] A[4][1] A[4][2] A[4][3]

A[5][0] A[5][1] A[5][2] A[5][3]

… … … …

4 blocks/set, 2 = 21 cache sets → 1 bit encodes cache set number

8 = 23 blocks in cache → 3 bits encodes cache block number

X
X
X
X

X

X
X
X

X

Direct Mapping

• The last 3-bits of address decide the CB.

– Memory Block Num. % 8 → Cache Block Num.

• No replacement algorithm is needed.

• When i = 9 and i = 8: 2 cache hits in total.

• Only 2 out of the 8 cache positions are used.

– Very poor cache utilization: 25%

CSCI2510 Lec07: Cache in Action 2021-22 T1 48

Content of Cache Blocks after Loop Pass (i.e. Timeline)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 9 i = 8 i = 7 i = 6 i = 5 i = 4 i = 3 i = 2 i = 1 i = 0

Cache

Block

Number

0 A[0][0] A[0][0] A[2][0] A[2][0] A[4][0] A[4][0] A[6][0] A[6][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[6][0] A[6][0] A[4][0] A[4][0] A[2][0] A[2][0] A[0][0]

1

2

3

4 A[1][0] A[1][0] A[3][0] A[3][0] A[5][0] A[5][0] A[7][0] A[7][0] A[9][0] A[9][0] A[9][0] A[7][0] A[7][0] A[5][0] A[5][0] A[3][0] A[3][0] A[1][0] A[1][0]

5

6

7

A[0][0]: (7A00)
A[1][0]: (7A04)
A[2][0]: (7A08)
A[3][0]: (7A0C)
A[4][0]: (7A10)
A[5][0]: (7A14)
A[6][0]: (7A18)
A[7][0]: (7A1C)
A[8][0]: (7A20)
A[9][0]: (7A24)

first columnj i

Program

Tags not shown but are needed

Class Exercise 7.6

• Assume direct mapped cache is used.

• What if the i loop is a forward loop?

CSCI2510 Lec07: Cache in Action 2021-22 T1 49

Content of Cache Blocks after Loop Pass (i.e. Timeline)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

Cache

Block

Number

0 A[0][0] A[0][0] A[2][0] A[2][0] A[4][0] A[4][0] A[6][0] A[6][0] A[8][0] A[8][0]

1

2

3

4 A[1][0] A[1][0] A[3][0] A[3][0] A[5][0] A[5][0] A[7][0] A[7][0] A[9][0]

5

6

7

A[0][0]: (7A00)
A[1][0]: (7A04)
A[2][0]: (7A08)
A[3][0]: (7A0C)
A[4][0]: (7A10)
A[5][0]: (7A14)
A[6][0]: (7A18)
A[7][0]: (7A1C)
A[8][0]: (7A20)
A[9][0]: (7A24)

first columnj i

Program

Tags not shown but are needed

Associative Mapping

• All CBs are used in the FCFS basis.

• LRU replacement policy is used.

• When i = 9, 8, …, 2: 8 cache hits in total.

• 8 out of the 8 cache positions are used.

– Optimal cache utilization: 100%

CSCI2510 Lec07: Cache in Action 2021-22 T1 51

Content of Cache Blocks after Loop Pass (i.e. Timeline)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 9 i = 8 i = 7 i = 6 i = 5 i = 4 i = 3 i = 2 i = 1 i = 0

Cache

Block

Number

0 A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[0][0]

1 A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[1][0] A[1][0]

2 A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0]

3 A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0]

4 A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0]

5 A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0]

6 A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0]

7 A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0]

A[0][0]: (7A00)
A[1][0]: (7A04)
A[2][0]: (7A08)
A[3][0]: (7A0C)
A[4][0]: (7A10)
A[5][0]: (7A14)
A[6][0]: (7A18)
A[7][0]: (7A1C)
A[8][0]: (7A20)
A[9][0]: (7A24)

first columnj i

Program

Tags not shown but are needed

Class Exercise 7.7

• Assume associative mapped cache is used.

• What if the i loop is a forward loop?

CSCI2510 Lec07: Cache in Action 2021-22 T1 52

Content of Cache Blocks after Loop Pass (i.e. Timeline)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

Cache

Block

Number

0 A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[8][0] A[8][0]

1 A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[9][0]

2 A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0]

3 A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0]

4 A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0]

5 A[5][0] A[5][0] A[5][0] A[5][0] A[5][0]

6 A[6][0] A[6][0] A[6][0] A[6][0]

7 A[7][0] A[7][0] A[7][0]

A[0][0]: (7A00)
A[1][0]: (7A04)
A[2][0]: (7A08)
A[3][0]: (7A0C)
A[4][0]: (7A10)
A[5][0]: (7A14)
A[6][0]: (7A18)
A[7][0]: (7A1C)
A[8][0]: (7A20)
A[9][0]: (7A24)

first columnj i

Program

Tags not shown but are needed

4-way Set Associative Mapping

• There are total 8 ÷ 4 = 2 Cache Sets.

– Memory Block Num. % 2 → Cache Set Num.

• The numbers of accessed MBs are all “even” (e.g.

7A00, 7A04) → Mapped to Cache Set #0.

• LRU replacement policy is used.

• When i = 9, 8, …, 6: 4 cache hits in total.

• 4 out of the 8 cache positions are used (50% Util.).

CSCI2510 Lec07: Cache in Action 2021-22 T1 54

Content of Cache Blocks after Loop Pass (i.e. Timeline)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 9 i = 8 i = 7 i = 6 i = 5 i = 4 i = 3 i = 2 i = 1 i = 0

CB #

0 A[0][0] A[0][0] A[0][0] A[0][0] A[4][0] A[4][0] A[4][0] A[4][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[4][0] A[4][0] A[4][0] A[4][0] A[0][0]

1 A[1][0] A[1][0] A[1][0] A[1][0] A[5][0] A[5][0] A[5][0] A[5][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[5][0] A[5][0] A[5][0] A[5][0] A[1][0] A[1][0]

2 A[2][0] A[2][0] A[2][0] A[2][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[2][0] A[2][0] A[2][0]

3 A[3][0] A[3][0] A[3][0] A[3][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[3][0] A[3][0] A[3][0] A[3][0]

4

5

6

7

A[0][0]: (7A00)
A[1][0]: (7A04)
A[2][0]: (7A08)
A[3][0]: (7A0C)
A[4][0]: (7A10)
A[5][0]: (7A14)
A[6][0]: (7A18)
A[7][0]: (7A1C)
A[8][0]: (7A20)
A[9][0]: (7A24)

first columnj i

Program

Set 0

Set 1

Tags not shown but are needed

Class Exercise 7.8

• Assume 4-way set associative mapped

cache is used.

• What if the i loop is a forward loop?

CSCI2510 Lec07: Cache in Action 2021-22 T1 55

Content of Cache Blocks after Loop Pass (i.e. Timeline)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

CB #

0 A[0][0] A[0][0] A[0][0] A[0][0] A[4][0] A[4][0] A[4][0] A[4][0] A[8][0] A[8][0]

1 A[1][0] A[1][0] A[1][0] A[1][0] A[5][0] A[5][0] A[5][0] A[5][0] A[9][0]

2 A[2][0] A[2][0] A[2][0] A[2][0] A[6][0] A[6][0] A[6][0] A[6][0]

3 A[3][0] A[3][0] A[3][0] A[3][0] A[7][0] A[7][0] A[7][0]

4

5

6

7

A[0][0]: (7A00)
A[1][0]: (7A04)
A[2][0]: (7A08)
A[3][0]: (7A0C)
A[4][0]: (7A10)
A[5][0]: (7A14)
A[6][0]: (7A18)
A[7][0]: (7A1C)
A[8][0]: (7A20)
A[9][0]: (7A24)

first columnj i

Program

Tags not shown but are needed

Set 0

Set 1

Summary

• Cache Basics

• Mapping Functions

– Direct Mapping

– Associative Mapping

– Set Associative Mapping

• Replacement Algorithms

– Optimal Replacement

– Least Recently Used (LRU) Replacement

– Random Replacement

• Working Examples

CSCI2510 Lec07: Cache in Action 2021-22 T1 57

